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ux-dependent, whereas the locking frequency itself turns out to be ux-independent.74.50
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I. INTRODUCTIONJosephson junction arrays are considered as candidates for microwave oscillators withpossible applications in the �eld of satellite communication systems, astronomical observa-tions, construction of supercomputer chips and spectroscopy1{8;?. They are potentially welltunable over a relatively wide frequency range while radiating on a narrow linewidth, andthey can deliver large output power, at least in comparison with a single element. Lin-ear arrays of Josephson junctions have been subject to theoretical investigation for morethan twenty years1;3;8;10{12. During last years, there have been some promising experimentalresults13{15. Since the beginning of the nineties, there has been a growing interest in 2Darrays4;5;16{21. Up to now, the radiation power of 2D arrays was found to be much smallerthan that of 1D arrays (0,1 �W maximum18, in comparison to 50 �W in 1D arrays15). Thismay be a consequence of technological problems as well as of general properties of 2D arrays.Because of this fact, there is some renewed interest in the general mechanisms of syn-chronization of coupled Josephson junctions. Most of the early adiabatic investigations werebased on weak (preferably inductive) coupling of the elements1;22{27;?, which is surely ful-�lled for relatively large circuits with total inductances >� 10 pH. However, present daytechnology allows the preparation of very compact arrays with circuit dimensions around 1�m and smaller, having inductances smaller than 3pH. In this case, the adiabatic methodsdeveloped earlier fail. On the other hand, neglecting inductances at all29 seems to be a toorough approximation.In this paper we develop a method for dealing with Josephson junctions coupled via asmall inductive shunt (SQUID-type coupling) in a systematic way. In Sec. II, we describe thecircuits handled by this method, derive the general equations, review some results obtainedby conventional methods and discuss their inapplicability to our problem. In Sec. III, wegive a review of our analytical method and present some results for the simplest case of non-hysteretical, identical junctions, which are compared with numerical simulations. Sec. IV isdevoted to non-identical junctions and Sec. V to the inuence of an additional small junction3



capacitance. In Sec. VI we consider the synchronization of strongly coupled SQUID cellsby external microwave radiation. A summary as well as some speculations about possibleapplications of our results are given in Sec. VII.Contrary to most theoretical investigations which are mainly based on computer simula-tions during the last years, we concentrate on approximate analytical results. The advantageof this approach is usually a better insight into physical mechanisms in combination with abroader range of applicability concerning the choice of parameters. The disadvantage is alarger amount of mathematical machinery necessary even in relatively simple cases. How-soever, we found it quite valuable to use both methods and compare the results. Somematerial described in Sec. III was published in a short note earlier30.II. A SHORT REVIEW ON WEAKLY COUPLED JOSEPHSON JUNCTIONSThe strong coupling method described in this paper was developed for the investigationof the three similar SQUID-like cells shown in Fig. 1, but the general principles should havea much wider range of applicability. These three circuits have a bias current 2I0, a net loopinductance L and a parallel biasing scheme in common. Elaborating the equations of motionwithin the RSJ model, one obtains for the case of identical junctions_�1 + sin�1 = i0 � l�1(�1 � �2 + '); (2.1a)_�2 + sin�2 = i0 + l�1(�1 � �2 + ') (2.1b)where �1 and �2 are the respective Josephson phases, and i0 is the normalized bias current,i0 = I0=IC (IC: critical current); (2.2)which is supposed to ful�ll the condition i0 > 1, here. l marks the normalized loop induc-tance, l = 2�ICL=�0; (2.3)and ' the normalized external ux, 4



' = 2��=�0 (�: external ux, �0: ux quantum): (2.4)Dots denote di�erentiation w.r.t. the scaled times = (2e=�h)ICRN t (RN : normal resistance): (2.5)There exist several investigations of these systems for weak coupling, i.e. l� 11;3;26. Inthis case, coupling can be neglected to 0th order w.r.t. l�1 and both junctions oscillate withthe Josephson phase of an overcritically biased free contact,�1=2 = arctan " �0i0 + 1 tan ��0s� �1=22 �#+ �2 ; (2.6)showing an oscillation frequency �0 = qi20 � 1 (2.7)and constant phases �1 and �2. To 1st order the lowest harmonics of solutions (2.6) areinserted into the r.h.s. of Eqs. 2.1a,b. This provides so-called reduced equations for themean values of the phases, averaged over short time scales of the order of �0. Looking forsolutions of the phase-locking type,_< � > = 0; < � >=< �1 > � < �2 >; (2.8)one �nds < � > � 1i0�i0 + �0� sin < � >= ': (2.9)For usual operation regimes with i0 � 1:5 this results in an approximate linear relationbetween � and �, as indicated in Fig. 2. The normalized voltagesv1=2 = V1=2ICRN (2.10)are obtained as v1=2 = �20i0 + cos(�0s� �1=2) : (2.11)5



This procedure and similar adiabatic methods led to a general understanding of the be-havior of weakly coupled Josephson junctions. However, they are not applicable to smallcircuits (of diameter <� 1�m) with inductances <� 1 pH. The point is, that for small induc-tances the parameter l�1 is not longer small, e.g. l�1 � 3 for L = 1 pH and IC = 100 �A.In this case the term in parenthesis on the r.h.s. of Eqs. 2.1a and 2.1b, resp., dominates theremaining terms and it is not possible to derive reduced equations of the type mentionedabove.In order to deal with small inductances which already can be realized technologicallytoday, we developed an alternative systematic scheme, which is described in the next section.III. A PERTURBATION SCHEME FOR STRONG INDUCTIVE COUPLINGAt �rst, we found it convenient to introduce new variables� = (�2 � �1)=2 and � = (�2 + �1)=2; (3.1)providing the set of equations_� + cos � sin� = 1l ('� 2�); (3.2a)_� + sin� cos� = i0: (3.2b)These equations already indicate that the behavior of � is determined necessarily by thebias current i0 and that of � by the external ux, although coupling makes things slightlymore complicated.We perform a perturbation expansion valid for small l,� = �0 + l�1 +O(l2); (3.3a)� = �0 + l�1 +O(l2): (3.3b)This ansatz resembles the "slowly-varying amplitudemethod" developed several years ago1;31for l�1 then and resulting in reduced equations similar to those mentioned above. Expandingthe sin and cos terms, it is not su�cient that the condition6



jl�1j � j�0j (3.4)is ful�lled, but additionally we must demand the much more rigid conditionsjl�1j � 1 and jl�1j � 1: (3.5)Investigation of the �nal result shows, that this can be met for all ' by choosing a su�cientlysmall l. Only the case ' = � requires a slightly more involved consideration.After inserting the expansion (3.3a,b) into Eqs. 3.2a,b one can compare identical powersof l. To lowest, i.e. (�1)st, order one �nds�0 = '=2 (3.6)without solving any di�erential equation. This general feature is valid for higher orders ofl, too: The variables �n must be determined by solving a �rst-order di�erential equation(only to lowest (0th) order being non-linear), whereas the �'s can be calculated algebraically.Introducing a once more rescaled time,~s = s � cos ('=2); 0 = dd~s; (3.7)the equation for �0 (0th order w.r.t. l) becomes very similar to that of an autonomousjunction, �00 + sin�0 =~i0; ~i0 = i0= cos('=2): (3.8)Thus, we can immediately write down the solution,�0 = 2arctan �0i0 + cos('=2) tan ��0s2 �!+ �2 ; (3.9)with �0 = qi20 � cos2('=2) (3.10)where we have imposed the initial condition�0(s = 0) = �=2: (3.11)7



Because the �n are determined algebraically there is no freedom to specify separate initialconditions for them. To ensure the validity of the perturbation expansion, it is importantto specify all higher �n according to�n(s = 0) = 0 for n � 1: (3.12)With �0 and �0 given �1 can be determined algebraically,�1 = 12  �0 sin(�0s)i0 + cos('=2) cos(�0s) sin('=2)! : (3.13)This expression automatically satis�es the initial condition�1(0) = 0 (3.14)required for the validity of the perturbation expansion. For �1 one obtains the inhomoge-neous linear di�erential equation_�1 + �1 cos �0 cos('=2) ��1 sin�0 sin('=2) = 0; (3.15)admitting the solution�1 = tan2('=2)2(i0 + cos('=2) cos �0s)  i0 cos('=2)(1 � cos �0s) + �20 ln i0 + cos('=2) cos �0si0 + cos('=2) ! (3.16)where we already exploited the initial condition, Eq. 3.12. From Eqs. 3.6, 3.9, 3.13, and3.16 one derives the normalized voltagesv1=2 = ��20i0 + cos('=2) cos ��0s + l ��0 sin('=2)2(i0 + cos('=2) cos ��0s)2 � (3.17)" sin('=2) sin ��0s i0 + cos('=2) + ��20cos('=2) ln i0 + cos('=2) cos ��0si0 + cos('=2) !���0 cos('=2) + i0 cos ��0s!#:In this way we derived an analytic expression for the voltage on junction 1 and 2 resp.,valid to �rst order w.r.t. l. It has to be compared with the solution (2.11) for weakly coupledelements. Both have in common, that there always exists a solution showing phase-locking8



for all values of the external �eld. However, contrary to the case of weak coupling, where thephase shift scales approximately with external ux, we will shortly see that it is negligiblysmall for all values of the external �eld, except for ' � �. On the other hand, the frequency,being ux-independent for weakly coupled elements, becomes ux-dependent according toEqs. 3.17,10, detuning the cell this way.So far, we could not derive an equation of motion (a kind of reduced equation) for thephase shift of strongly coupled elements directly from the basic equations as it is possiblefor weakly coupled elements. Therefore we must adopt an appropriate alternative de�nitionof phase di�erence. We de�ne phase shift as the di�erence of the mean value crossings ofthe lowest harmonics of v1 and v2 according to (3.17).To proceed, we must evaluate the lowest Fourier coe�cients of Eqs. 3.17,v1=2 = �2 + a1=2 cos �0s+ b1=2 sin �0s: (3.18)After some calculation including a Taylor expansion of the logarithm one obtains� = 2�0; (3.19)a1=2 = �0i0 + �0 (�2 cos('=2) � l�0 sin('=2)); (3.20)b1=2 = b = l sin2('=2) cos('=2)(i0 + �0) 0@1 + cos ('=2)i0 + �304i20(i0 + �0))1A : (3.21)Note that the Fourier coe�cient b being proportional to l is small compared to a1=2; thecoe�cient a1=2 itself is dominated by its �rst term, except for ' = �. Thus, with the possibleexception of the vicinity of this value, both voltages are in phase independent of the externalux.Adopting the de�nition given before, one can derive a formula for the phase shift � as afunction of the Fourier coe�cients,� = arccos0@ a1a2 + b2qb2(a21 + a22 + b2) + a21a221A ; (0 � ' � �): (3.22)Deriving this formula, no assumption has been made about the structure or order of magni-tude of the Fourier coe�cients. Extension to � < ' � 2� needs a more subtle investigationof the solution itself to get the correct branch of the arccos; in this case one obtains9



� = sgn(b(a1 � a2))24� � arccos0@ a1a2 + b2qb2(a21 + a22 + b2) + a21a221A35+ (2k + 1)�; (3.23)(0 � ' � 2�):Fig. 3 shows the phase shift between v1 and v2 as a function of external ux '.Our analytical approach was accompanied by numerical investigations exploiting thePersonal Superconducting Circuit ANalyzer program PSCAN32;33 (Fig. 4). Comparisonof Figs. 3 and 4 shows that even for l = 1 where the analytical approximation is notlonger valid results are quite similar to those of the numerical simulation. Both �gures showthat already in this case the behavior is qualitatively di�erent from that of weakly coupledelements. Thus, in the intermediate regime l � 1 the strong coupling scheme provides abetter approximation to the actual behavior of the SQUID cell than the weak couplingresults do.There are two limiting cases of special interest. For vanishing external ux the elementsbehave in the same way as one junction; the phase shift between voltages vanishes and theelements oscillate with voltagesv1 = v2 = �20i0 + cos �0s: (3.24)This behavior is plausible, because in this case there is no current owing through the shuntand both elements act essentially as one element. For ' = � one obtainsv1 = i0 � li02 cos i0s+ l4 sin 2i0s; (3.25)v2 = i0 + li02 cos i0s+ l4 sin 2i0s: (3.26)This clearly indicates that the phase di�erence � between the voltages according to ourde�nition is equal to �. Within the narrow transition region between the regimes � � 0 and� � � oscillations become highly non-harmonic (cf. the voltages in Figs. 5a and 5b). This iscaused by higher harmonics becoming dominant in comparison to the lowest harmonic withfrequency �0. In this case the de�nition of phase di�erence based on the lowest harmonicof the Fourier expansion (3.18) as well in the analytical calculation as in the numerical10



procedure becomes less reliable. The jump observed in the numerical curve (Fig. 4) may beassigned to this fact.To derive a more simple rule of thumb Eq. 3.22 can be rewritten as�(') = arctan(a2=b)� arctan(a1=b); 0 � ' < �: (3.27)with a1=2 and b according to (3.20,3.21). We consider this formula for very small, but �nitel. In this case, the second arctan approaches the value ��=2. The �rst one changes its signat the ux '�, cos('�=2) � l2�0 sin('�=2) = 0: (3.28)Exploiting this formula while neglecting higher orders in l, one obtains'� � � � i0l: (3.29)This provides a simple approximation for the phase shift of the cells under investigation,� � ��('� '�) (' � �): (3.30)Fig. 6 shows that for su�ciently small l the solution is indeed perfectly approximated by aHeaviside step function. This approximation might be useful considering more complicatedarrays.Another quantity of interest is the I-V characteristics of the cells under investigation.From (3.18) one easily obtains v1=2 = qi20 � cos2('=2): (3.31)This reproduces a well-known result3: The I-V characteristics of a small-inductance SQUIDhas a hyperbolic shape, the vertex being dependent on the external ux.IV. PARAMETER-SPLITTING IN STRONGLY COUPLED CELLSReal junctions never have identical parameters. The response to parameter di�erencesbecomes particularly important in large arrays, where one usually cannot avoid a parameter-11



splitting of the order of one p.c., at least. In this section we consider junctions havingdi�erent critical currents as well as normal resistances,IC1 6= IC2; RN1 6= RN2 ; (4.1)with the subsidiary condition IC1RN1 = IC2RN2 ; (4.2)which is usually realized as a consequence of the technological process with a good accuracy.Introducing the mean critical currentIC = 12(IC1 + IC2) (4.3)and the parameter-splitting # = IC2 � IC1IC2 + IC1 ; (4.4)one derives the following RSJ-model equations for the cells shown in Fig. 1:_�1 + sin�1 = i01� # � 1l(1� #)(�1 � �2 + '); (4.5a)_�2 + sin�2 = i01 + # + 1l(1 + #)(�1 � �2 + '): (4.5b)As before, it is advantageous to introduce new variables � and � according to Eq. 3.1.Eqs. 3.2a,b are then modi�ed to_� + cos � sin� = � #1� #2 i0 + 1l(1� #2)('� 2�); (4.6a)_� + sin� cos� = 11� #2 i0 � #l(1� #2)('� 2�): (4.6b)Some e�ects are already qualitatively displayed by this couple of equations. (i) To �rst orderin # there is a correction of the magnetic ux � �i0l#. (ii) There is a correction of thebias current #(' � 2�)=l being of �rst order, too. It includes an additional coupling via�. Eqs. (4.6a,b) indicate that for weak coupling (l � 1; # � 1) the additional magneticux dominates, an e�ect which has already been observed (cf. Eq. 13.30b in3). However,12



for strong coupling (l � 1; # � 1) this term is of second order only. It turns out that thedi�erence '� 2� is of the order of l, so the addition to the bias current is of �rst order in# and dominates.First of all, we are interested in the maximum parameter-splitting which is possiblewithout destroying synchronization. For this purpose, the splitting-parameter # should notbe considered small from the beginning. As before, we perform a perturbation expansionw.r.t. l according to (3.3a,3.3b). To lowest, i.e. �1st, order we again obtain �0 = '=2. To0th order, we get the system of equations_�0 + sin�0 cos('=2) = i01� #2 + 2#1 � #2�1; (4.7a)cos�0 sin�0 = � #1� #2 i0 � 21 � #2�1: (4.7b)Again, �0 has to be determined by solving a di�erential equation, whereas �1 is calculatedalgebraically. The new feature is an additional coupling between both variables caused bythe last term on the r.h.s. of Eq. 4.7a. Combining both equations, one obtains_�0 + sin�0 cos('=2) + # cos �0 sin('=2) = i0: (4.8)In comparison to (3.8) this equation shows an additional non-linearity due to the parameter-splitting.Eq. 4.8 can be handled exactly. There are four di�erent types of solutions34. Only oneof them shows the continuous transition to the case # = 0 and the corresponding oscillatingvoltage: It is realized for i20 > #2 sin2('=2) + cos2('=2): (4.9)Further estimation gives the bound for oscillations to occur,i20 > 1: (4.10)This reproduces a well-known fact.With this condition ful�lled we could evaluate �0 and from (4.7b) �1. However, although�1 has to be determined from a �rst-order linear di�erential equation, the resulting integrals13



are rather intricate. Thus, we performed a perturbative treatment of the system (4.6a,b)not only w.r.t. l, but w.r.t. #, too. This is more delicate, of course, because there aretwo parameters involved. To discuss the l- and #-dependence independently, its not wise tospecify the ratio l=# from the beginning. We only suppose l � 1 and # � 1, leaving theratio #=l unspeci�ed. To �rst order, we write down the expansion� = �0 + l�10+ #�01; (4.11a)� = �0 + l�10 + #�01: (4.11b)Inserting into (4.6a,b) and comparing equal orders lm#n, one obtains the set of equationsnecessary to evaluate the �'s and �'s. For �0;�0;�10, and �10 one obtains similar equationsas before. Furthermore, one observes �01 = 0; thus, no additional phase shift is caused bythe parameter-splitting. For �01 one obtains an equation similar in structure to that for �10(cf. Eq. 3.15), _�01 + �01 cos�0 cos('=2) + cos�0 sin('=2) = 0: (4.12)It admits the solution �01 = 1� cos �0si0 + cos('=2) cos �0s sin('=2): (4.13)Thus, weak parameter-splitting leads to an additional in-phase contribution#(i0 + cos('=2)) sin �0s �0s sin('=2)(i0 � cos('=2) cos �0s)2 (4.14)to be added to the voltages (3.17). The Fourier coe�cients a1=2 are una�ected by this,whereas there is an additional contribution to b1=2,b#1=2 = 2#�i0 + cos('=2)�sin('=2)i0 + �0 : (4.15)The solution obtained this way proves our earlier conjecture on the dominant contributionin the strong-coupling case (Fig. 7a). One observes that the phase shift, being slightly raisedgenerally is considerably lowered for ' = �. To lowest order of our analytic approximation14



(valid for strong coupling and weak parameter splitting) there is no indication of a shift ofthe peak caused by the parameter splitting. This is con�rmed by comparison with numericalsimulation, as long as parameter splitting is su�ciently small (# <� 0:2). For larger # thenumerical result (Fig. 7b) gives a �rst hint to the peak shift.V. CAPACITIVELY SHUNTED JUNCTIONSThe inuence of the displacement current owing through the junctions was neglectedup to now. This is justi�ed, as long as the McCumber parameter35;36� = 2e�h ICR2NC (5.1)is negligible.In this section, we will investigate the inuence of � 6= 0. The displacement currentadds a second-derivative term to the RSJ model equations (sometimes called RCSJ modelequations then), � ��1 + _�1 + sin�1 = i0 � l�1(�1 � �2 + '); (5.2a)� ��2 + _�2 + sin�2 = i0 + l�1(�1 � �2 + '): (5.2b)In general, the second derivative may change the character of the di�erential equationscompletely; for instance, it is well-known that there appear new types of solutions showingchaotic behavior37;38. Here, we will restrict our treatment to small � (� � 1) guaranteeinga continuous transition to the former solution for � = 0.Again, it is recommended to combine Eqs. 5.2a,b obtaining� ��+ _� + cos� sin� = 1l ('� 2�); (5.3a)� ��+ _� + sin� cos� = i0: (5.3b)One clearly sees, that both equations are a�ected by the additional �-terms. Again, both land � are supposed to be small parameters justifying the expansion15



� = �0 + l�10 + ��01; (5.4a)� = �0 + l�10 + ��01: (5.4b)The resulting equations for �0;�0;�10; and �10, resp., are essentially the same as before.For �01 one readily recovers �01 = 0: (5.5)The only new equation concerns �01,_�01 + �01 cos �0 cos ('=2) = ���0; (5.6a)where we have already exploited some of the previous results. Again, this is an inhomoge-neous linear di�erential equation, with the inhomogeneity being determined by the alreadywell-known �0. The solution, obeying the correct boundary condition (�01(s = 0) = 0), is�01 = �20i0 + cos('=2) cos �0s ln i0 + cos('=2) cos �0si0 + cos('=2) : (5.7)One obtains a logarithmic structure similar to that observed earlier in formula (3.16). Theterm (5.7) provides to both voltages a contribution_�01 = �30 cos('=2) sin �0s(i0 + cos('=2) cos �0s)2  ln i0 + cos('=2) cos �0si0 + cos('=2) � 1! : (5.8)Because the logarithmic structure is already present in (3.17), it is not hard to evaluate thecorresponding capacitive contribution to be added to the Fourier coe�cients b1=2 accordingto (3.21), b�1=2 = b� = �2��20 cos('=2)(i0 + �0)  1 + cos('=2)i0 � �0 cos2('=2)4i20(i0 + �0) ! : (5.9)The phase di�erence obtained by inserting (3.21) and (5.9) together with the unchangedcoe�cients (3.20) into (3.23) is shown in Fig. 8a. Results of a numerical calculation per-formed in parallel are given in Fig. 8b. The general tendency is that a non-vanishingcapacitance (� <� 1) slightly enhances the phase shift without qualitatively changing thegeneral behavior. For � > 0:5 the agreement between analytical approximation and numer-ical simulation becomes worse, but the same general tendency is still preserved. This is, ofcourse, simply a result of the fact that higher orders in � are no longer negligible.16



VI. STRONGLY COUPLED SQUID CELLS UNDER MICROWAVE RADIATIONThere is some interest in the behavior of the SQUID cells under microwave radiationfrom at least two points of view. First of all, the topic is interesting for the constructionof sensitive microwave detectors. Secondly, knowledge of the behavior under microwaveradiation is necessary for the study of synchronization in larger arrays, where the long-rangeinteraction via external shunts acts similar to an external microwave signal.The external microwave signal can be described by an additional ac current, leading tothe system of equations_�1 + sin�1 = i0 � l�1(�1 � �2 + ') + i! sin!s; (6.1a)_�2 + sin�2 = i0 + l�1(�1 � �2 + ') + i! sin!s: (6.1b)As a result, only the equation for the sum variable � is a�ected and becomes_� + sin � cos� = i0 + i! sin!s; (6.2)whereas Eq. 3.2a for the di�erence variable � remains unchanged. We apply a perturbationscheme similar to that used before. From the beginning we will assume l � 1, as before,justifying the expansion (3.3a,b). Solving for �0 and �1, resp., we must take i! to be smallin some intermediate steps, too.The �rst result is �0 = '=2; (6.3)as usual. The corresponding equation for �0,_�0 + sin�0 cos('=2) = i0 + i! sin!s; (6.4)is decisive for the behavior of the solution. Introducing the scaled time ~s according to (3.7),we obtain�00 + sin�0 = ~i0 +~i! sin ~!~s; ~i! = i!cos('=2) ; ~! = !cos('=2) ; (6.5)17



which formally has the same structure as the equation describing an autonomous Josephsonjunction under external irradiation26;31;39.It is well-known that phase-locking of an autonomous junction takes place only if thefrequency of the external microwave does not deviate too far from the inherent Josephsonfrequency �0 = qi20 � 1,�����2�0i! (! � �0)����� < 1 (autonomous contact): (6.6)The main new feature in our case is, that the corresponding quantities substituted for i0; i!;and ! resp. according to i0 ! ~i0; (6.7)i! ! ~i!; (6.8)! ! ~! (6.9)are dependent on the external magnetic ux. Exploiting the corresponding equation�����2~�0~i! (~! � ~�0)����� < 1; (6.10)one obtains the phase-locking condition�0 � i! cos('=2)2�0 � ! � �0 + i! cos('=2)2�0 : (6.11)An interesting conclusion from Eq. 6.11 is that for external ux ' = � the range of phase-locking shrinks to a single point, ! = �0 = i0. In this case, for all practical purposesphase-locking disappears at all. This is con�rmed by Fig. 9, showing the range of phase-locking against external ux '. The reason for this behavior is obvious from examining (6.4):For ' = � the non-linear term vanishes thus removing the non-linearity of the equation atall. One more observation is that the center of the locking-range determined by �0 becomesux-dependent, too.In case of phase-locking, phase shift between the external microwave and the circuit (thelast being characterized by the sum variable �) can be deduced from comparison with theautonomous contact yielding 18



�0 = arcsin 2�0(! � �0)i! cos('=2) : (6.12)To verify our result in an independent way, we performed a numerical operation rangeanalysis automatically integrating the corresponding di�erential equations and checking,whether the results lie within a certain bound. The output of this analysis indicated bydiamonds in Fig. 9 is in excellent agreement with the analytical results. In view of theexperimental setup the �gure should be interpreted as follows: For a �xed bias current andfrequency of the external microwave radiation there is a limited range of ux indicated inFig. 9, within which synchronization occurs. Within this range the whole cell oscillateswith the microwave frequency, !. For small microwave intensities this puts rather severeconditions on the external ux, as is observed by comparing Figs. 9a, b and c.In case of phase-locking, we obtain to 0th order of perturbation theory�0 = 2arctan  �0i0 + cos('=2) tan �!s2 � �02 �!+ �2 (6.13)with the lowest-order phase shift �0 according to (6.12).Within the next perturbative order, �1 is determined algebraically as before. The so-lution is identical to Eq. 3.13, the only di�erence being, that within the time-dependentarguments one has to substitute �0s! !s� �0: (6.14)For �1 we obtain the equation_�1 + �1 cos �0 cos('=2) ��1 sin�0 sin('=2) = 0: (6.15)Substituting �0 we exploit (6.4) neglecting the external current, bearing in mind that i!is small and �1 is already of �rst order. Within this approximation, the solution has thesame general structure as (3.16), where we again have to substitute (6.14). As a result, inaddition to the ux-dependent phase shift between the SQUID circuit voltage oscillationsand the external microwave signal we obtain the same (mostly negligible) phase splittingbetween the junction voltages than without radiation.19



To summarize, solution (3.17) is reproduced with the only substitution (6.14). This hasseveral consequences: (i) The frequency of the oscillations is determined by the microwavefrequency only and turns out to be independent of external ux within the locking-range.(ii) If external ux is present in addition to the microwave radiation, this ux will limit therange of phase-locking in general and destroy synchronization at all in case of ' = �. (iii)The relative phase of both junctions is not inuenced by the external radiation up to �rstorder in perturbation theory w.r.t. l. (iv) There is an additional shift of both phases relativeto the external radiation according to Eq. 6.12, which is controlled by external ux as well.VII. SUMMARYWe investigated the synchronization behavior of three similar 2-junction SQUID cellswith strong inductive coupling. For this purpose we developed a perturbation scheme ap-propriate for small but non-vanishing inductances. The perturbation ansatz itself is in acertain sense similar to the "slowly-varying amplitude method" developed several years ago.However, application to strong coupling completely changes the character of the expansion.Generally, the procedure is more involved than in the case of weak coupling. Thereforewe were not able to derive an explicit equation of motion for the phase di�erence betweenvoltages. In view of this fact, we determined voltage phase shift from the lowest Fouriercoe�cients of the voltages.For identical junctions without capacitive shunting we �nd that for every value of theexternal ux a phase-locking between oscillating voltages takes place like in weakly coupledelements. However, contrary to the case of weak coupling, the phase shift is negligibly smallfor almost all values of external ux, with the exception of the vicinity of ' = �. On theother hand, the frequency, being ux-independent for weakly coupled elements, becomesstrongly ux-dependent in strongly coupled elements and, consequently, the correspondingI-V characteristics too. The results obtained are compared with numerical calculations.Generally, a good agreement is observed. Especially it is found, that the strong-coupling20



approach provides a good approximation not only for very small inductances l, but is bettersuited to describe the intermediate range l � 1 than the ordinary weak-coupling approach.If both junctions are not identical the inuence of parameter splitting is found to bequalitatively di�erent for weak and for strong coupling. For weak coupling, parametersplitting mainly leads to an additional contribution to the external ux; as a result, thewhole phase-ux-dependence is shifted by some value. In case of strong coupling, this e�ectcan be neglected and the leading contribution is a correction of the bias current. Thiscorrection acts in favor of synchronization and lowers the phase shift present in a smallrange around ' = �.In case of identical junctions having a small, but non-vanishing capacitance the mainresult is a slight enhancement of the phase shift, although the qualitative picture is notchanged, at least if � < 1. For � > 0:5 the agreement of analytical results and numericalsimulation becomes less convincing, obviously showing the limitations of applicability of theanalytical perturbative method. We should mention that in the case � 6= 0 as well as forparameter splitting two independent expansion parameters must be considered small.Finally, we investigated the behavior of the cells under external microwave radiation. Inthis case, we observed a limited locking range similar to that of an autonomous Josephsonjunction under external radiation. However, for a strongly coupled cell the synchronizationrange is ux-dependent and shrinks to zero for ' = �. In addition, the width of thesynchronization range depends on the amplitude of the external radiation.Contrary to our results for a freely oscillating cell, external radiation synchronizes thecell in such a way that the oscillation frequency becomes ux-independent within the ux-dependent locking range. However, within the synchronization range, an additional phaseshift between external radiation and internal oscillations takes place as well as a shift of thewhole synchronization range.From our study one can draw the general conclusion, that two strongly inductive coupledjunctions behave like a free junction if no ux is present within the cell. External uxtends to shift the phases between the voltage oscillations of the two junctions, but for most21



practical applications this splitting is negligibly small. More serious is the fact that alreadyin a cell of identical junctions the oscillation frequency itself becomes �eld-dependent. Thisdetuning of the cell has several consequences for the construction of larger arrays. Firstof all, external uxes must be shielded, preferably by an external superconducting groundplane. Secondly, additional uxes are produced by the array itself, which might seriouslydisturb the synchronization40.A possible way to circumvent this problem and to obtain phase-locking could be to includean external long-range interaction via an additional shunt. The methods developed in Sec.VI could be helpful in such an investigation. For instance, according to our observations,an external shunt with su�ciently strong coupling-strength to make the synchronizationfrequency ux-independent may play a crucial role for obtaining phase-locking in large two-dimensional arrays. ACKNOWLEDGMENTSThis work was supported by a project of the BMBW under contract # 13N6132 andby DFG under contract # KR1172/4-1. The authors would like to express their thanksto BMBW, DFG and DAAD for �nancial support. In addition, the authors would like tothank A. Nowack for a critical reading of the manuscript and B. Frank for suggesting severalcorrections and improvements.
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FIGURESFIG. 1. Three SQUID Cells which can be described with the strong coupling method describedin this paper.FIG. 2. Mean voltage phase shift � against normalized external ux ' from analytical approx-imation for weak inductive coupling (i0 = 1:5).FIG. 3. Phase shift � against normalized external ux ' for strong inductive coupling l = 0:1and medium inductive coupling l = 1:0 obtained from analytical approximation (3.23) (i0 = 1:5).FIG. 4. Like Fig. 3, results obtained from numerical simulation. (A tiny shunt capacitance� = 0:01 has to be added here.)FIG. 5. Time-dependence of the voltage for two di�erent values of the external ux, a) ' = �=2b) ' = �, Parameters: i0 = 1:5; l = 0:1.FIG. 6. Phase shift � against normalized external ux ' for extremely strong coupling(0:001 � l � 0:1), obtained from analytical approximation (3.23) (i0 = 1:5).FIG. 7. The inuence of parameter splitting on the phase shift � against normalized externalux ' for strong coupling obtained from a) analytical approximation (3.23), b) numerical simulation(i0 = 1:5; l = 0:1; 2 � ' � 4).FIG. 8. The inuence of a non-vanishing capacitive shunt of the Josephson junctions on thephase di�erence for i0 = 1:5; l = 0:1; � = 0:2; 0:5; 1:0. a) analytical approximation, b) numericalsimulation (i0 = 1:5; l = 0:1; 2 � ' � 4).FIG. 9. Synchronization range for a strongly coupled SQUID cell under external microwaveradiation with frequency ! for a)i! = 0:1, b)i! = 0:2, c)i! = 0:4 (bias current i0 = 1:5 ). Thediamonds indicate results from numerical operation range analysis.23
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