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Josephson Junction arrays are currently under consideration as tunable microwave radia-tion sources.1;2. After clarifying the basic principles of one-dimensional (1D) arrays3{7, thereis a growing interest in two-dimensional (2D) arrays since the pioneering work by Benz andBooi8{11. According to basic estimates2 radiation output generated by this type of arrays isexpected to be much larger than that from 1D arrays. However, experimental results pointjust in the opposite direction. While linear arrays delivered output powers up to 50�W,the maximum output power reported for two-dimensional arrays is around 100nW,12{14 andusually much smaller. While the general estimates referred to above are surely true, thisshould be caused by the fact, that actually very few junctions are locked in-phase.There can be several reasons responsible for poor radiation output. Besides comparablysmall critical currents as in22 or technological problems this can as well result from the fact,that the basic mechanisms of phase locking in 2D arrays, despite some interesting resultson several aspects2;15;13;16, are not yet su�ciently understood. It is well known though,that there is no phase locking in unshunted 2D arrays in the absence of external ux. Atheoretical study of the inuence of ux with a "master-slave-mechanism" by Filatrella andWiesenfeld15 led to the conclusion that external ux can indeed lead to a certain phaselocking; however the de�nite value of the phase di�erence could not be determined by theirmethod, and stability was not considered at all.Here, we start with a very simple model 2D array, consisting of two loops coupled viaa line transverse to the bias current (Fig. 1). Despite its simplicity this model is di�cultenough to show the essential features of larger arrays: It is truly two-dimensional with apossible external ux entering the loops and a inductance in the transverse line, as it istypical in the nowadays favored hybrid arrays. Our propositions are as follows: (i) Bothjunctions are considered to be identical. (ii) Self-inductance is taken into account whilemutual inductances are neglected. (iii) Junctions are overdamped with � � 0. (iv) Thereis no external load. (v) Instead of working within the framework of the widely used �rstharmonic approximation we exploit a phase slip technique which has proven successful in 1Darrays before3;6;7. Its applicabiliy crucially depends on the proposition that the normalized2



ring inductance l = 2�ICL=�0 (1)(IC critical current of the junctions, L ring inductance, �0 ux quantum) is su�ciantly small(l� 1).Josephson junctions are described by the RSJ (Resistively Shunted Junction) equationsfor the Josephson phases �jk,_�jk + sin�jk = ijk (fj; kg = f1; 2g); (2)where the dot denotes di�erentiation w.r.t. the normalized time variables = 2e�h RNICt (3)(RN : junction normal resistance; all currents are normalized to IC). Normalizing the exter-nal magnetic ux � according to ' = 2��=�0 (4)we have to respect two ux quantization conditions,�12 � �11 � '� li = 0; (5)�22 � �21 � '+ li = 0: (6)In the following the transverse current playing a crucial role in the coupling will be denotedby i (cf. Fig. 1). In strong coupling problems of this type it has proven useful to introducesum and di�erence variables according to17;18�k = 12(�k2 + �k1); (7)�k = 12(�k2 � �k1): (8)In addition, we introduce the circular currentsi�k = (ik2 � ik1)=2: (9)3



With the help of these variables the problem can be reformulated as_�k + sin�k cos�k = i0; (10)_�k + sin�k cos�k = i�k; (11)�1 +�2 � ' = 0; (12)�1 ��2 � l(i�2 � i�1) = 0: (13)This indicates, that the voltage sums of both loops are driven by the bias current i0 > 1, whilethe circular currents drive voltage di�erences. Further, Eq. (12) is the ux quantization forthe whole array, while Eq. 13 shows that di�erences in the circular currents spread the uxdi�erences of the loops. The transverse current i can be obtained fromi = i�2 � i�1 = 1l (�1 ��2): (14)According to Eq. (13) it is just the combination li which causes the coupling between thecells.The system (10)-(13) is treated perturbatively assuming the ring inductance l to besu�ciently small. To lowest order, the ux quantization conditions gives (the second indexindicating the order of evaluation) �k;0 = '=2; (15)i.e., junctions within both loops oscillate exactly in-phase. The Josephson oscillations itselfcan be evaluated from (10) as�i;0 = �2 + 2 arctan �0i0 + cos('=2) tan �0s� �i2 ! ; (16)where we introduced the ux-dependent autonomous oscillation frequency�0 = q(i20 � cos2('=2)): (17)This already completes the lowest order solution for our problem; Eqs. (11) are not requiredfor evaluating the Josephson phases within this order, but determine the circular currents4



i�k;0 = sin('=2) cos �k;0 (18)with cos �k;0 = � �0 sin(�0s� �k)i0 + cos('=2) cos(�0s� �k) : (19)To summarize, in lowest order the junctions within each cell oscillate in phase independentlyof the value of the external ux, while the relative oscillation phase between the cells remainsundetermined.Changing to the next order l1 we start again from the Josephson phase di�erences (12)and (13), inserting the lowest order result (18) on the r.h.s. of Eq. (13). From the two alge-braic equations arising the correction terms �k;1 can be easily evaluated, and the Josephsonphase di�erences of the two loops up to the �rst order in l are given by�1 = '2 + l2 sin('=2)(cos �2;0 � cos�1;0); (20)�2 = '2 � l2 sin('=2)(cos �2;0 � cos �1;0): (21)From this result, one can read o� the transverse currenti = sin('=2) (cos �2;0 � �1;0) (22)with the basic harmonici = 4�0 sin('=2)i0 + �0 cos �0s� �1 + �22 ! sin �2 � �12 ! : (23)We point out, that although i is proportional to 1=l this factor cancels out because of �1��2being proportional to l itself. Accordingly, the amplitude of the transverse current is thesame independently of the inductance l.The most remarkable property of this type of "internal shunt current" is its vanishingfor ' = 0 and growing with the external ux '. One should notice, that this behavior is justopposite to that of an external shunt current, which usually turns out to be proportional tocos('=2). The absence of any transverse rf current for ' = 0 is however obvious: In thiscase the array is completely symmetric. 5



For evaluating the Josephson phase sums of the cells we exploit the method of "slowlyvarying phase" which has proven useful in the study of phase locking in one-dimensionalarrays before6;7;4. According to this method corrections are put into the phases �k,�k = �k(s); (24)which are supposed to change adiabatically only (in comparison to the rf Josephson os-cillations) in time. In addition, we will allow for the possibility that the joint oscillationfrequency � be (slightly) di�erent from the autonomous frequency �0. With these assump-tions the voltage sums can be written as_�k = �0(� � _�k)i0 + cos('=2) cos(�s� �k) : (25)Inserting (25) into (10) and neglecting higher orders in l after some algebra we arrive at�0(� � �0 � _�1) = (l=4)i(s) sin'+ (l=2)i0i(s) sin('=2) cos(�s� �1); (26)�0(� � �0 � _�2) = �(l=4)i(s) sin'� (l=2)i0i(s) sin('=2) cos(�s� �2): (27)Here, all the interaction terms proportional to l arising on the l.h.s. of Eq. (10) weretransferred to the r.h.s. In this way, the combination li plays a similar role as a synchronizingalternating external or shunt current3;19;20.To proceed, we average over one oscillation period, considering �k as roughly constantover this time interval. It can be shown, that only the lowest harmonic (23) of i contributes.Evaluation of the mean values results in the evolution equations�0(� � �0� < _�1 >) = l �0i02(i0 + �0) sin2('=2) sin(< �2 > � < �1 >); (28)�0(� � �0� < _�2 >) = �l �0i02(i0 + �0) sin2('=2) sin(< �2 > � < �1 >); (29)where< �k > denotes the one-period average over �k. Subtraction gives the reduced equationfor the phase di�erence � = �1 � �2,< _� >= l i0i0 + �0 sin2('=2) sin < � >; (30)6



having formally the same structure as the RSJ equation describing an unbiased autonomousjunction. It admits two phase locking solutions,< �pl >= 0 and < �pl >= �; (31)describing in-phase (< �pl >= 0) or anti-phase (< �pl >= �) oscillations of the cells.Investigation of the stability leads to the Liapunov coe�cient� = l i0i0 + �0 sin2('=2) cos < �pl > : (32)As a result, only anti-phase oscillations are stable against small perturbations. By substi-tuting (31) into (28) one easily recovers that the oscillation frequency remains equal to thatof an autonomous junction, i.e. � = �0: (33)To summarize, the following picture arises: From earlier results17;21 we know, that thetwo junctions within each strongly coupled cell are generally (except for ' � �) alignedin-phase. In addition, according to (31) both junctions from cell one oscillate anti-phaserelative to those from cell 2. Synchronization of the cells in this state is provided by thealternating current (22), owing through the joint transverse connection. It is obvious, thatsuch a state will be non-radiating. In addition, our �ndings justify earlier results on missingphase locking in the absence of external ux, which within our framework can be explainedby the marginal stability observed in (32) for ' = 0.All results described in this paper are in complete agreement with corresponding numer-ical simulations performed in parallel. These simulations show, that the observed anti-phaselocking is not bounded to the case of small inductances treated analytically here, but is ageneral feature of this type of array. If this remains true for larger arrays, which is underinvestigation now, this might well explain the low radiation output obtained with two-dimensional arrays up to now. In addition, investigations are on the way on the interplaywith an external shunt current. 7
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FIGURESFIG. 1. The two-dimensional Josephson junction circuit under investigation.
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